TY - CHAP
T1 - Optomagnetic Detection of Rolling Circle Amplification Products
AU - Minero, Gabriel Antonio S.
AU - Cangiano, Valentina
AU - Fock, Jeppe
AU - Garbarino, Francesca
AU - Hansen, Mikkel Fougt
PY - 2020
Y1 - 2020
N2 - Rolling circle amplification (RCA) of a synthetic nucleic acid target is detected using magnetic nanoparticles (MNPs) combined with an optomagnetic (OM) readout. Two RCA assays are developed with on-chip detection of rolling circle products (RCPs) either at end-point where MNPs are mixed with the sample after completion of RCA or in real time where MNPs are mixed with the sample during RCA. The plastic chip acts as a cuvette, which is positioned in a setup integrated with temperature control and simultaneous detection of four parallel DNA hybridization reactions between functionalized MNPs and products of DNA amplification. The OM technique probes the small-angle rotation of MNPs bearing oligonucleotide probes complementary to the repeated nucleotide sequence of the RCPs. This rotation is restricted when MNPs bind to RCPs, which can be observed as a turn-off of the signal from MNPs that are free to rotate. The amount of MNPs bound to RCPs is found to increase in response to the amplification time as well as in response to the synthetic DNA target concentration (2–40 pM dynamic range). We report OM real-time results obtained with MNPs present during RCA and compare to relevant end-point OM results for RCPs generated for different RCA times. The real-time approach avoids opening of tubes post-RCA and thus reduces risk of lab contamination with amplification products without compromising the sensitivity and dynamic range of the assay.
AB - Rolling circle amplification (RCA) of a synthetic nucleic acid target is detected using magnetic nanoparticles (MNPs) combined with an optomagnetic (OM) readout. Two RCA assays are developed with on-chip detection of rolling circle products (RCPs) either at end-point where MNPs are mixed with the sample after completion of RCA or in real time where MNPs are mixed with the sample during RCA. The plastic chip acts as a cuvette, which is positioned in a setup integrated with temperature control and simultaneous detection of four parallel DNA hybridization reactions between functionalized MNPs and products of DNA amplification. The OM technique probes the small-angle rotation of MNPs bearing oligonucleotide probes complementary to the repeated nucleotide sequence of the RCPs. This rotation is restricted when MNPs bind to RCPs, which can be observed as a turn-off of the signal from MNPs that are free to rotate. The amount of MNPs bound to RCPs is found to increase in response to the amplification time as well as in response to the synthetic DNA target concentration (2–40 pM dynamic range). We report OM real-time results obtained with MNPs present during RCA and compare to relevant end-point OM results for RCPs generated for different RCA times. The real-time approach avoids opening of tubes post-RCA and thus reduces risk of lab contamination with amplification products without compromising the sensitivity and dynamic range of the assay.
U2 - 10.1007/978-1-0716-0138-9_1
DO - 10.1007/978-1-0716-0138-9_1
M3 - Book chapter
C2 - 31667758
SN - 978-1-0716-0137-2
VL - 2063
T3 - Methods in Molecular Biology
SP - 3
EP - 15
BT - Nucleic Acid Detection and Structural Investigations
PB - Springer
ER -