Optoelectronic cooling of mechanical modes in a semiconductor nanomembrane

A. Naesby, K. Usami, T. Bagci, B. Melholt Nielsen, Jin Liu, Søren Stobbe, Peter Lodahl, E. S. Polzik

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

    Abstract

    Optical cavity cooling of mechanical resonators has recently become a research frontier where cooling of the vibrational motion of the resonators has been realized via photo-thermal force [1] and subsequently via radiation pressure [2–4]. One of the ultimate goals is reaching the vibrational ground state allowing quantum mechanical states of vibration - and the field offers a potential for hybrid quantum devices, and optical engineering of the phonon degrees of freedom. We present a new cavity cooling mechanism in semiconductors due to an optical excitation of carriers above the bandgap and the stress that these carriers introduce in the crystal lattice. The new method proves very power efficient and could potentially help in enabling ground state cooling of vibrational modes of semiconductor resonators. A laser cooled narrow-band phonon bath may open up a new avenue for photonics.
    Original languageEnglish
    Title of host publication2011 Conference on and 12th European Quantum Electronics Conference Lasers and Electro-Optics Europe (CLEO EUROPE/EQEC)
    PublisherIEEE
    Publication date2011
    ISBN (Print)978-1-4577-0533-5
    DOIs
    Publication statusPublished - 2011
    EventEuropean Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference 2011 - Munich, Germany
    Duration: 22 May 201126 May 2011
    http://2011.cleoeurope.org/

    Conference

    ConferenceEuropean Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference 2011
    Country/TerritoryGermany
    CityMunich
    Period22/05/201126/05/2011
    Internet address

    Fingerprint

    Dive into the research topics of 'Optoelectronic cooling of mechanical modes in a semiconductor nanomembrane'. Together they form a unique fingerprint.

    Cite this