Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation

N. Ortiz-Vitoriano, Carlos Bernuy-Lopez, I. Ruiz de Larramendi, Ruth Knibbe, Karl Tor Sune Thydén, Anne Hauch, Peter Holtappels, T. Rojo

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

For Solid Oxide Fuel Cells (SOFCs) to become an economically attractive energy conversion technology suitable materials which allow operation at lower temperatures, while retaining cell performance, must be developed. At the same time, the cell components must be inexpensive - requiring both low-priced raw material and cost-effective production techniques.In this work the perovskite-type La0.6Ca0.4Fe0.8Ni0.2O3 (LCFN) oxide has been used in order to optimize intermediate temperature SOFC cathode processing route. The advantages this material presents arise from the low temperature powder calcination (∼600°C) and electrode sintering (∼800°C) of LCFN electrodes, making them a cheaper alternative to conventional SOFC cathodes. An electrode polarization resistance as low as 0.10Ωcm2 at 800°C is reported, as determined by impedance spectroscopy studies of symmetrical cells sintered at a range of temperatures (800-1000°C). Scanning Electron Microscopy (SEM) studies revealed porous electrode microstructures, even when sintered at a temperature of just 800°C. The competitive performance of the electrodes sintered at low temperatures, combined with the low raw material cost, make these electrodes an excellent potential choice for SOFC cathodes. In this work a new cathode processing technique is presented which provides a more economical, lower temperature SOFC production route with no detrimental effect on device efficiency. © 2012 Elsevier Ltd.
Original languageEnglish
JournalApplied Energy
Volume104
Pages (from-to)984-991
ISSN0306-2619
DOIs
Publication statusPublished - 2013

Keywords

  • Calcination
  • Cathodes
  • Electrochemical impedance spectroscopy
  • Energy conversion
  • Low temperature production
  • Microstructure
  • Optimization
  • Perovskite
  • Scanning electron microscopy
  • Sintering
  • Spectroscopy
  • Solid oxide fuel cells (SOFC)

Cite this