Optimizing nitrate removal in woodchip beds treating aquaculture effluents - DTU Orbit

Optimizing nitrate removal in woodchip beds treating aquaculture effluents

Nitrate is typically removed from aquaculture effluents using heterotrophic denitrification reactors. Heterotrophic denitrification reactors, however, require a constant input of readily available organic carbon (C) sources which limits their application in many aquaculture systems for practical and/or economic reasons. A potential alternative technology for removing nitrate currently applied for treating surface and drainage water is based on using wood by-products as a carbon source for denitrification. Using lab-scale horizontal-flow woodchip filters, the current study investigated the potential of optimizing woodchip reactors for treating aquaculture effluent. A central composite design (CCD) was applied to assess the effects of simultaneously changing the empty bed contact time (EBCTs of 5.0-15.0 h; corresponding to theoretical hydraulic retention times of 3.3-9.9 h) and bicarbonate (HCO₃⁻) inlet concentration (0.50-1.59 g HCO₃⁻/l) on the removal rate of NO₃⁻-N, and additional organic and inorganic nutrients, in effluent deriving from an experimental recirculating aquaculture system (RAS). Volumetric NO₃⁻-N removal rates ranged from 5.20 ± 0.02 to 8.96 ± 0.19 g/m³/day and were enhanced by adding bicarbonate, suggesting that parts of the removal was due to autotrophic denitrification. The highest N removal rate (8.96 ± 0.05 g/m³/day) was achieved at an EBCT and HCO₃⁻ combination of 15 h and 1.59 g HCO₃⁻/l. Bicarbonate inlet concentration as a single factor had the strongest effect on N removal rates followed by the interaction with EBCT, and EBCT² (quadratic term). The study thus indicates that woodchip beds may be applied and optimized for removing nitrate from aquaculture effluents. Statement of relevance: This study is a relevant contribution to research in aquaculture as it presents an alternative method for removing nitrates from aquaculture effluents especially for less intensive fish farms. Furthermore, it shows how this method can be optimized to yield higher removal rates of nitrate.

General information
Publication status: Published
Organisations: National Institute of Aquatic Resources, Section for Aquaculture, Aarhus University
Contributors: von Ahnen, M., Pedersen, P. B., Hoffmann, C. C., Dalsgaard, A. J. T.
Pages: 47-54
Publication date: 2016
Peer-reviewed: Yes

Publication Information
Journal: Aquaculture
Volume: 458
ISSN (Print): 0044-8486
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.75 SJR 1.122 SNIP 1.51
Web of Science (2016): Impact factor 2.57
Web of Science (2016): Indexed yes
Original language: English
Keywords: Aquatic Science, Bicarbonate, Denitrification, Hydraulic retention time, Nitrogen
DOIs: 10.1016/j.aquaculture.2016.02.029
Source: FindIt
Source ID: 2292500665
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review