TY - JOUR
T1 - Optimization of anti-wear and anti-bacterial properties of beta TiNb alloy via controlling duty cycle in open-air laser nitriding
AU - Chang, Xianwen
AU - Smith, Graham C.
AU - Quinn, James
AU - Carson, Louise
AU - Chan, Chi-Wai
AU - Lee, Seunghwan
PY - 2020
Y1 - 2020
N2 - A multifunctional beta TiNb surface, featuring wear-resistant and antibacterial properties, was successfully created by means of open-air fibre laser nitriding. Beta TiNb alloy was selected in this study as it has low Young's modulus, is highly biocompatible, and thus can be a promising prosthetic joint material. It is, however, necessary to overcome intrinsically weak mechanical properties and poor wear resistance of beta TiNb in order to cover the range of applications to load-bearing and/or shearing parts. To this end, open-air laser nitriding technique was employed. A control of single processing parameter, namely duty cycle (between 5% and 100%), led to substantially different structural and functional properties of the processed beta TiNb surfaces as analyzed by an array of analytical tools. The TiNb samples nitrided at the DC condition of 60% showed a most enhanced performance in terms of improving surface hardness, anti-friction, anti-wear and anti-bacterial properties in comparison with other conditions. These findings are expected to be highly important and useful when TiNb alloys are considered as materials for hip/knee articular joint implants.
AB - A multifunctional beta TiNb surface, featuring wear-resistant and antibacterial properties, was successfully created by means of open-air fibre laser nitriding. Beta TiNb alloy was selected in this study as it has low Young's modulus, is highly biocompatible, and thus can be a promising prosthetic joint material. It is, however, necessary to overcome intrinsically weak mechanical properties and poor wear resistance of beta TiNb in order to cover the range of applications to load-bearing and/or shearing parts. To this end, open-air laser nitriding technique was employed. A control of single processing parameter, namely duty cycle (between 5% and 100%), led to substantially different structural and functional properties of the processed beta TiNb surfaces as analyzed by an array of analytical tools. The TiNb samples nitrided at the DC condition of 60% showed a most enhanced performance in terms of improving surface hardness, anti-friction, anti-wear and anti-bacterial properties in comparison with other conditions. These findings are expected to be highly important and useful when TiNb alloys are considered as materials for hip/knee articular joint implants.
KW - Beta Ti–Nb alloys
KW - Fibre laser nitriding
KW - Wear
KW - Antibacterial
KW - Duty cycle
U2 - 10.1016/j.jmbbm.2020.103913
DO - 10.1016/j.jmbbm.2020.103913
M3 - Journal article
C2 - 32957212
SN - 1751-6161
VL - 110
JO - Journal of the Mechanical Behavior of Biomedical Materials
JF - Journal of the Mechanical Behavior of Biomedical Materials
M1 - 103913
ER -