Abstract
Industrial cake filtration is non-trivial from an operational point of view. Discrete events such as the removal of filter cake occur on a frequent but irregular basis. These events tend to upset the steady state of the incorporating line, which may constrain plantwide optimisation. A case study has been carried out with an industrial partner where changes in the biological feedstock act as strong disturbances on a series of manually reinitialised dead-end pressure leaf filters. This renders production planning a challenging task which,so far, is carried out by experienced operators. We look for shortcomings in the current, heuristically grown manner of operating the filters and present guidelines for a superior strategy. A predictive process model is required for a deterministic scheduling algorithm, and two approaches at modelling the filtrations are presented and compared.
Original language | English |
---|---|
Title of host publication | Proceedings of the 27th European Symposium on Computer Aided Process Engineering (ESCAPE 27) |
Editors | Antonio Espuña, Moisès Graells, Luis Puigjaner |
Volume | 40 |
Publisher | Elsevier |
Publication date | 2017 |
Edition | 1 |
Pages | 1471-1478 |
ISBN (Print) | 9780444639653 |
ISBN (Electronic) | 9780444639707 |
DOIs | |
Publication status | Published - 2017 |
Event | 27th European Symposium on Computer Aided Process Engineering - Barcelona, Spain Duration: 1 Oct 2017 → 5 Oct 2017 Conference number: 27 https://www.elsevier.com/books/27th-european-symposium-on-computer-aided-process-engineering/espuna/978-0-444-63965-3 |
Conference
Conference | 27th European Symposium on Computer Aided Process Engineering |
---|---|
Number | 27 |
Country/Territory | Spain |
City | Barcelona |
Period | 01/10/2017 → 05/10/2017 |
Internet address |
Keywords
- Biosystems and Bioprocesses
- Downstream processing
- Parameter and state estimation
- Data mining tools
- Modeling and identification
- Pressure leaf filtration