Abstract
Wind farms and energy storage systems are playing increasingly more important roles in power systems, which makes their offering non-negligible in some markets. From the perspective of wind farm-energy storage systems (WF-ESS), this paper proposes an integrated strategy of day-ahead offering and real-time operation policies to maximize their overall profit. As participants with large capacity in electricity markets can influence cleared prices by strategic offering, a large scaled WFESS is assumed to be a price maker in day-ahead markets. Correspondingly, the strategy considers influence of offering quantity on cleared day-ahead prices, and adopts linear decision rules as the real time control strategy. These allow enhancing overall profits from both day-ahead and balancing markets. The integrated price-maker strategy is formulated as a stochastic programming problem, where uncertainty of wind power generation and balancing prices are taken into account in the form of scenario sets, permitting to reformulate the optimization problem as a linear program. Case studies validate the effectiveness of the proposed strategy by highlighting and quantifying benefits comparing with the price-taker strategy, and also show the profit enhancement brought to the distributed resources
Original language | English |
---|---|
Journal | IEEE Transactions on Power Systems |
Volume | 32 |
Issue number | 6 |
Pages (from-to) | 4904-4913 |
Number of pages | 10 |
ISSN | 0885-8950 |
DOIs | |
Publication status | Published - 2017 |
Bibliographical note
(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Keywords
- Electricity markets
- Energy storage system
- Linear decision rules
- Offering strategy
- Price-maker strategy
- Wind farm