Abstract
Many industrialised nations recently concentrated their focus on hydrogen as a viable option for the decarbonisation of fossil-intensive sectors, including maritime transportation. A sustainable alternative to the conventional production of hydrogen based on fossil hydrocarbons is water electrolysis powered by renewable energy sources. This paper presents a detailed techno-economic optimisation model for sizing an electrolyser and a hydrogen storage embedded in a multi-domain virtual power plant to produce green hydrogen for seaborne passenger transportation. We base our numerical analysis on three years of historical data from a renewable-dominated 60/10kV substation on the Danish island of Bornholm, and on data for ferries to the mainland of Sweden. Our analysis shows that an electrolyser system serves as a valuable flexibility asset on the electrical demand side, while supporting the thermal management of the district heating system and contributing to meeting the ferries hydrogen demand. With a sized electrolyser of 9.63MW and a hydrogen storage of 1.45t, the hydrogen assets are able to take up a large share of the local excess electricity generation. The waste heat of the electrolyser delivers a significant share of 21.4% of the annual district heating demand. Moreover, the substation can supply 26% of the hydrogen demand of the ferries from local resources. We further examine the sensitivity of the asset sizing towards investment costs, electrolyser efficiency and hydrogen market prices.
Original language | English |
---|---|
Article number | 101236 |
Journal | Sustainable Energy, Grids and Networks |
Volume | 36 |
Number of pages | 13 |
ISSN | 2352-4677 |
DOIs | |
Publication status | Published - 2023 |
Keywords
- Demand-side flexibility
- Electrolyser
- Maritime transportation
- Multi-energy systems
- Optimal sizing
- Power-to-hydrogen