Abstract
This paper investigates the techno-economic characteristics of renewable-based energy system design options that need to meet the multi-vector energy demand, i.e. electricity, heat and hydrogen of a food factory in four different places and two different years in China. A two-stage optimization approach is proposed: Firstly, the Hybrid Optimization Model for Electric Renewable (HOMER) software is used to obtain all feasible scenarios meeting demands with the lowest cost; Then, a Multi-Criteria Decision-Making method, Vise Kriterijumska Optimizacija kompromisno Resenje (VIKOR), is adopted to re-evaluate all feasible scenarios to determine the optimal solution considering not only the economy but also energy and environment. Different technologies, like power generation: photovoltaic panel (PV), wind turbine (WT) and both together (PV/WT), energy storage: battery, fuel cell (FC), and both (battery/FC), and hydrogen production: steam methane reforming and water electrolysis, are evaluated to find the best combination. The software results show, PV/WT combination usually has advantages over PV alone and WT alone in power generation in locations with abundant solar energy and wind energy. So is the energy storage. Reformer scenarios are much cheaper than electrolyzers. However, the VIKOR results show, the top scenarios in different locations and years are all using electrolyzers to produce hydrogen.
Original language | English |
---|---|
Article number | 123174 |
Journal | Energy |
Volume | 244 |
Number of pages | 18 |
ISSN | 0360-5442 |
DOIs | |
Publication status | Published - 2022 |
Keywords
- Techno-economic characteristics
- Renewable-based sustainable solution
- Two-stage optimization approach
- HOMER software
- Multi-criteria decision-making method