Optical cavity cooling of mechanical modes of a semiconductor nanomembrane

Koji Usami, A. Naesby, Tolga Bagci, B. Melholt Nielsen, Jin Liu, S. Stobbe, P. Lodahl, Eugene S. Polzik

Research output: Contribution to journalJournal articleResearchpeer-review


Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high-quality-factor and optically active semiconductor nanomembrane. The cooling is a result of electron–hole generation by cavity photons. Consequently, the cooling factor depends on the optical wavelength, varies drastically in the vicinity of the semiconductor bandgap, and follows the excitonic absorption behaviour. The resultant photo-induced rigidity is large and a mode temperature cooled from room temperature down to 4 K is realized with 50 μW of light and a cavity finesse of just 10. Thermal stress due to non-radiative relaxation of the electron–hole pairs is the primary cause of the cooling. We also analyse an alternative cooling mechanism that is a result of electronic stress via the deformation potential, and outline future directions for cavity optomechanics with optically active semiconductors.
Original languageEnglish
JournalNature Physics
Issue number2
Pages (from-to)168–172
Publication statusPublished - 2012


  • Optical physics
  • Nanotechnology

Fingerprint Dive into the research topics of 'Optical cavity cooling of mechanical modes of a semiconductor nanomembrane'. Together they form a unique fingerprint.

Cite this