Online short-term forecast of greenhouse heat load using a weather forecast service - DTU Orbit (11/08/2019)

Online short-term forecast of greenhouse heat load using a weather forecast service

In some district heating systems, greenhouses represent a significant share of the total load, and can lead to operational challenges. Short term load forecast of such consumers has a strong potential to contribute to the improvement of the overall system efficiency. This work investigates the performance of recursive least squares for predicting the heat load of individual greenhouses in an online manner. Predictor inputs (weekly curves terms and weather forecast inputs) are selected in an automated manner using a forward selection approach. Historical load measurements from 5 Danish greenhouses with different operational characteristics were used, together with weather measurements and a weather forecast service. It was found that these predictors of reduced complexity and computational load performed well at capturing recurring load profiles, but not fast frequency random changes. Overall, the root mean square error of the prediction was within 8–20% of the peak load for the set of consumers over the 8 months period considered.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Dynamical Systems, Aalborg University
Corresponding author: Vogler-Finck, P. J.
Contributors: Vogler-Finck, P. J., Bacher, P., Madsen, H.
Pages: 1298-1310
Publication date: 1 Nov 2017
Peer-reviewed: Yes

Publication information
Journal: Applied Energy
Volume: 205
ISSN (Print): 0306-2619
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 8.44 SJR 3.162 SNIP 2.765
Web of Science (2017): Impact factor 7.9
Web of Science (2017): Indexed yes
Original language: English
Keywords: Greenhouses, Heat demand, Load forecast, Model selection, Recursive least squares, Weather forecast service
DOIs: 10.1016/j.apenergy.2017.08.013
Source: Scopus
Source-ID: 85028435570
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review