Online analysis of oxygen inside silicon-glass microreactors with integrated optical sensors

A powerful online analysis set-up for oxygen measurements within microfluidic devices is presented. It features integration of optical oxygen sensors into microreactors, which enables contactless, accurate and inexpensive readout using commercially available oxygen meters via luminescent lifetime measurements in the frequency domain (phase shifts). The fabrication and patterning of sensor layers down to a size of 100 μm in diameter is performed via automated airbrush spraying and was used for the integration into silicon-glass microreactors. A novel and easily processable sensor material is also presented and consists of a polystyrene-silicone rubber composite matrix with embedded palladium(II) or platinum(II) meso-tetra(4-fluorophenyl) tetrabenzoporphyin (PdTPTBPF and PtTPTBPF) as oxygen sensitive dye. The resulting sensor layers have several advantages such as being excitable with red light, emitting in the near-infrared spectral region, being photostable and covering a wide oxygen concentration range. The trace oxygen sensor (PdTPTBPF) in particular shows a resolution of 0.06-0.22 hPa at oxygen concentrations lower than 20 hPa (<2% oxygen) and the normal range oxygen sensor (PtTPTBPF) shows a resolution of 0.2-0.6 hPa at low oxygen concentrations (<50 hPa) and 1-2 hPa at ambient air oxygen concentrations. The sensors were integrated into different silicon-glass microreactors which were manufactured using mass production compatible processes. The obtained microreactors were applied for online monitoring of enzyme transformations, including d-alanine or d-phenylalanine oxidation by d-amino acid oxidase, and glucose oxidation by glucose oxidase.