On the simulation of aggregated solar PV forecast errors

Edgar Nuño Martinez*, Matti Juhani Koivisto, Nicolaos Antonio Cutululis, Poul Sorensen

*Corresponding author for this work

    Research output: Contribution to journalJournal articleResearchpeer-review

    288 Downloads (Orbit)

    Abstract

    The uncertainty arising from high levels of solar photovoltaic (PV) penetration can have a substantial impact on power system operation. Therefore, there is a need to develop models capable of representing PV generation in a rigorous manner. This paper introduces a novel transformation-based methodology to generate stochastic solar area power forecast scenarios; easy to apply to new locations. We present a simulation study comparing day-ahead solar forecast errors covering regions with different geographical sizes, total installed capacities and climatic characteristics. The results show that our model can capture the spatio-temporal properties and match the long-term statistical properties of actual data. Hence, it can be used to characterize the PV input uncertainty in power system studies.
    Original languageEnglish
    JournalI E E E Transactions on Sustainable Energy
    Volume9
    Issue number4
    Pages (from-to)1889-1898
    ISSN1949-3029
    DOIs
    Publication statusPublished - 2018

    Keywords

    • Time series analysis
    • Power systems
    • Stochastic processes
    • Production
    • Predictive models
    • Autoregressive processes
    • Uncertainty
    • Solar power generation
    • Power system simulation
    • Forecasting

    Fingerprint

    Dive into the research topics of 'On the simulation of aggregated solar PV forecast errors'. Together they form a unique fingerprint.
    • NSON-DK: North Sea Offshore Network - Denmark

      Sørensen, P. E. S. (Project Coordinator), Das, K. (Project Participant), Koivisto, M. J. (Project Participant), Pade, L.-L. (Project Participant), Skytte, K. (Project Participant), Gea-Bermudez, J. (Project Participant), Papakonstantinou, A. (Project Participant), Boscán Flores, L. R. (Project Participant), Kanellas, P. (Project Participant), Plakas, K. (Project Participant), Kitzing, L. (Project Participant) & Bergaentzlé, C. M. (Project Participant)

      01/04/201631/03/2020

      Project: Research

    Cite this