Abstract
Shallow water environments in the land-sea transition zone are challenging to map in high spatial
resolution at large spatial scales. Historically this has led to gaps (white ribbons) between terrestrial
and marine surveys. Topobathymetric LiDAR (Light Detection And Ranging), also referred to as
green LiDAR which is able to penetrate through water, holds the potential to close this gap. However,
water column turbidity poses limitations to the penetration of the green laser beam, and water
column refraction of the laser beam poses limitations to the scale of features which can be resolved
at the seabed.
The aim of this study is to investigate the performance of topobathymetric LiDAR in shallow water
environments in relation to resolving small-scale morphological features at landscape scale. More
specifically, the objectives are: 1) to determine the spatial resolution as well as the horizontal and
vertical precision of green LiDAR based on object detection; and 2) to assess the potential of topobathymetric
LiDAR as a tool to combine and integrate terrestrial and marine mapping and related
investigations in the land-sea transition zone.
Topobathymetric LiDAR surveys were carried out in spring 2014 on an app. 7 km reach of the Ribe
Vesterå river and in a 5 km x 10 km section of the Knudedyb tidal inlet in the Danish Wadden Sea
using the airborne hydrographic laser scanner RIEGL® VQR-820-G. Prior to the surveys three geometrically
defined objects (steel frames with dimensions of 0.8 m x 0.8 m x 0.25 m) were placed
within the survey area in the river section, and in a back-barrier tidal channel and on a back-barrier
salt marsh in the tidal inlet system, respectively. The exact locations of the three objects were determined
by a Trimble® R8 GNSS Receiver.
The preliminary results show that the topobathymetric LiDAR system can detect the three objects.
However, the sharp corners and edges of the objects are not perfectly resolved due to a combination
of point density, which primarily is a function of effective measurement rate and flight height and
speed, and seabed footprint size, which primarily is a function of water depth and water column
refraction. The horizontal and vertical precision of the LiDAR system is at sub-decimetre scale at a
95% confidence level.
This suggests that topobathymetric LiDAR is capable of resolving relatively small-scale morphological
features in challenging shallow water environments in the land-sea transition zone at landscape
scale, as large spatial areas can be covered within short time, thereby enabling a closing of the
historical gap between terrestrial and marine surveys.
Original language | English |
---|---|
Title of host publication | Program og præsentationer |
Number of pages | 1 |
Publication date | 2015 |
Pages | 105 |
Publication status | Published - 2015 |
Event | 18. Danske Havforskermøde - Copenhagen, Denmark Duration: 28 Jan 2015 → 30 Jan 2015 http://havforsk2015.geus.dk/org_uk/main.html |
Conference
Conference | 18. Danske Havforskermøde |
---|---|
Country/Territory | Denmark |
City | Copenhagen |
Period | 28/01/2015 → 30/01/2015 |
Internet address |