On the isotropic elastic constants of graphite nodules in ductile cast iron: Analytical and numerical micromechanical investigations

A comprehensive description of the mechanical behavior of nodules in ductile iron is still missing in the published literature. Nevertheless, experimental evidence exists for the importance of such graphite particles during macroscopic material deformation, especially under compressive loading. In the present paper, the nodules' elastic properties are thoroughly investigated by means of both analytical and numerical techniques. The analysis takes into account the influence of several non-linear phenomena, as local residual stresses arising during solid-state cooling, interface debonding and limited particle strength. It is shown that if the nodule internal structure is considered, the traditional isotropy assumption leads to the definition of a domain of admissible values for the effective elastic constants. However, micromechanical calculations indicate that values within the domain do not provide mesoscopic moduli in agreement with Young's modulus and Poisson's ratio recorded for common ferritic ductile iron grades. This suggests that graphite nodules may not be considered isotropic at the microscopic scale, at least from a mechanical viewpoint.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Manufacturing Engineering
Contributors: Andriollo, T., Hattel, J.
Pages: 138-150
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Mechanics of Materials
ISSN (Print): 0167-6636
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.76 SJR 1.253 SNIP 1.606
Web of Science (2016): Impact factor 2.651
Web of Science (2016): Indexed yes
Original language: English
Keywords: Micromechanics, Ductile cast iron, Spheroidal graphite iron, Graphite nodules, Isotropic effective elastic moduli
DOIs: 10.1016/j.mechmat.2016.02.007
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review