Abstract
We present a method to maximize the separation of two adjacent eigenfrequencies in structures with two material components. The method is based on finite element analysis and topology optimization in which an iterative algorithm is used to find the optimal distribution of the materials. Results are presented for eigenvalue problems based on the 1D and 2D scalar wave equations. Two different objectives are used in the optimization, the difference between two adjacent eigenfrequencies and the ratio between the squared eigenfrequencies. In the ID case, we use simple interpolation of material parameters but in the 2D case the use of a more involved interpolation is needed, and results obtained with a new interpolation function are shown. In the 2D case, the objective is reformulated into a double-bound formulation due to the complication from multiple eigenfrequencies. It is shown that some general conclusions can be drawn that relate the material parameters to the obtainable objective values and the optimized designs.
Original language | English |
---|---|
Journal | Journal of Sound and Vibration |
Volume | 289 |
Issue number | 4-5 |
Pages (from-to) | 967-986 |
ISSN | 0022-460X |
Publication status | Published - 2006 |