On entire functions restricted to intervals, partition of unities, and dual Gabor frames

Ole Christensen, Hong Oh Kim, Rae Young Kim

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Partition of unities appears in many places in analysis. Typically it is generated by compactly supported functions with a certain regularity. In this paper we consider partition of unities obtained as integer-translates of entire functions restricted to finite intervals. We characterize the entire functions that lead to a partition of unity in this way, and we provide characterizations of the “cut-off” entire functions, considered as functions of a real variable, to have desired regularity. In particular we obtain partition of unities generated by functions with small support and desired regularity. Applied to Gabor analysis this leads to constructions of dual pairs of Gabor frames with low redundancy, generated by trigonometric polynomials with small support and desired regularity.
Original languageEnglish
JournalApplied and Computational Harmonic Analysis
Volume38
Issue number1
Pages (from-to)72-86
ISSN1063-5203
DOIs
Publication statusPublished - 2014

Keywords

  • Entire functions
  • Trigonometric polynomials
  • Partition of unity
  • Dual frame pairs
  • Gabor systems
  • Tight frames

Fingerprint

Dive into the research topics of 'On entire functions restricted to intervals, partition of unities, and dual Gabor frames'. Together they form a unique fingerprint.

Cite this