TY - JOUR
T1 - Occupants’ responses to window views, daylighting and lighting in buildings
T2 - A critical review
AU - Vasquez, Natalia Giraldo
AU - Rupp, Ricardo Forgiarini
AU - Andersen, Rune Korsholm
AU - Toftum, Jørn
PY - 2022
Y1 - 2022
N2 - This paper presents a critical review of studies addressing the effects of window views, daylighting, and lighting on occupant behavior, perception, performance, and well-being. A systematic search in the Scopus database was performed in November 2021 and yielded 515 hits. Seventy-six studies were selected according to the following criteria: i) papers presenting research results with participants’ responses and ii) accounting for daylighting, lighting, or window view assessments. The study and setting features, participants, predictors and outcomes, the statistical approach, the reported significance level, and study limitations were extracted from each paper. The analysis then identified differences in the effect of the predictor on the outcome. The number of records obtained through the structured analysis was 240. A wide range of predictors have been used in indoor daylighting, lighting, and window view research to assess people’s responses. The most commonly used predictors were artificial lighting features and window features -qualitative predictors - followed by some properties of the light sources, such as correlated color temperature, spectral distribution and horizontal illuminance. Differences in the methods for data collection, the used predictors, the outcomes, and the ways to measure the outcomes generated inconclusive results or results that were limited to the specific study. We extracted data from selected studies to suggest a simple model for the prediction of occupant performance from illuminance and correlated color temperature. The data points were few and scattered and the model, therefore, suffers from considerable uncertainties. Yet, it quantifies performance effects in ranges that are comparable with similar models from other indoor environment domains.
AB - This paper presents a critical review of studies addressing the effects of window views, daylighting, and lighting on occupant behavior, perception, performance, and well-being. A systematic search in the Scopus database was performed in November 2021 and yielded 515 hits. Seventy-six studies were selected according to the following criteria: i) papers presenting research results with participants’ responses and ii) accounting for daylighting, lighting, or window view assessments. The study and setting features, participants, predictors and outcomes, the statistical approach, the reported significance level, and study limitations were extracted from each paper. The analysis then identified differences in the effect of the predictor on the outcome. The number of records obtained through the structured analysis was 240. A wide range of predictors have been used in indoor daylighting, lighting, and window view research to assess people’s responses. The most commonly used predictors were artificial lighting features and window features -qualitative predictors - followed by some properties of the light sources, such as correlated color temperature, spectral distribution and horizontal illuminance. Differences in the methods for data collection, the used predictors, the outcomes, and the ways to measure the outcomes generated inconclusive results or results that were limited to the specific study. We extracted data from selected studies to suggest a simple model for the prediction of occupant performance from illuminance and correlated color temperature. The data points were few and scattered and the model, therefore, suffers from considerable uncertainties. Yet, it quantifies performance effects in ranges that are comparable with similar models from other indoor environment domains.
KW - Lighting
KW - Daylighting
KW - Productivity
KW - Well-being
KW - Perception
KW - Behavior
U2 - 10.1016/j.buildenv.2022.109172
DO - 10.1016/j.buildenv.2022.109172
M3 - Journal article
SN - 0360-1323
VL - 219
JO - Building and Environment
JF - Building and Environment
M1 - 109172
ER -