Observation of short time-scale spectral emissions at millimeter wavelengths with the new CTS diagnostic on the FTU tokamak: Paper

On the FTU tokamak, the collective Thomson scattering (CTS) diagnostic was renewed for investigating the possible excitation of parametric decay instabilities (PDI) by electron cyclotron (EC) or CTS probe beams in presence of magnetic islands and measure their effects on the EC power absorption. The experiments were performed launching a gyroton probe beam (140 GHz, 400 kW) and observing the scattered radiation in symmetric and asymmetric directions (with respect to the equatorial plane) in different conditions of plasma density and magnetic field (with or without the EC resonance in the plasma), and with magnetic islands generated by Neon injection. The acquisition with a fast digitizer allowed observing spectral features with very high time and frequency resolution. Shots were performed at 7.2 T, with the fundamental EC resonance out of the plasma region, at 4.7 T, with the resonance on the high field side of the plasma column, and at 3.6 T, in this last case with the plasma between the first and the second EC harmonics both lying outside the plasma volume. Several types of spectral features characterized by their frequency and their fast time evolution were identified in the observed signal after a proper treatment. The paper reports the observations in the different experimental cases and the correlation of the features with the existence of MHD modes as witnessed by magnetic probes signals and with macroscopic plasma parameters.

General information
Publication status: Published
Organisations: Department of Physics, Plasma Physics and Fusion Energy, Consiglio Nazionale delle Ricerche, ENEA Centro Ricerche Frascati, Swiss Federal Institute of Technology Lausanne, RAS - Institute of Applied Physics, Università degli Studi di Milano-Bicocca, Università degli Studi di Napoli Federico II
Number of pages: 8
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Nuclear Fusion
Volume: 57
Issue number: 7
Article number: 076004
ISSN (Print): 0029-5515
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.13 SJR 0.759 SNIP 1.999
Web of Science (2017): Impact factor 4.057
Web of Science (2017): Indexed yes
Keywords: Collective Thomson scattering, Parametric decay instabilities, Electron cyclotron heating, Magnetic islands
Electronic versions:
preprint0275.pdf
DOIs: 10.1088/1741-4326/aa6ce1
Source: FindIt
Source ID: 2357683310
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review