Abstract
This paper presents the numerical discretization methods of the continuous-time linear-quadratic optimal control problems (LQ-OCPs) with time delays. We describe the weight matrices of the LQ-OCPs as differential equations systems, allowing us to derive the discrete equivalent of the continuous-time LQ-OCPs. Three numerical methods are introduced for solving proposed differential equations systems: 1) the ordinary differential equation (ODE) method, 2) the matrix exponential method, and 3) the step-doubling method. We implement a continuous-time model predictive control (CT-MPC) on a simulated cement mill system, and the objective function of the CT-MPC is discretized using the proposed LQ discretization scheme. The closed-loop results indicate that the CT-MPC successfully stabilizes and controls the simulated cement mill system, ensuring the viability and effectiveness of LQ discretization.
Original language | English |
---|---|
Book series | IFAC-PapersOnLine |
Volume | 58 |
Issue number | 14 |
Pages (from-to) | 874-880 |
ISSN | 2405-8971 |
DOIs | |
Publication status | Published - 2024 |
Keywords
- Linear Quadratic Optimal Control
- Numerical Discretization
- Time Delay Systems