NOx from cement production - reduction by primary measures

Lars Skaarup Jensen

Research output: Book/ReportBookResearchpeer-review


This thesis comprises an investigation of the mechanisms involved in forming and reducing NOx in kiln systems for cement production. Particularly the mechanisms forming and reducing NOx in calciners are dealt with in detail, as altered calciner design and operation are most applicable to controlling NOx emission by primary measures. The main focus has been on elucidating NOx formation and reduction mechanisms involving reactions of char, and on determining their relative importance in calciners.The first three chapters give an introduction to cement production, combustion and NOx. In modern cement production processes cement is typically produced by thermally treating a mixture of limestone and clay minerals in kiln systems consisting of a rotary kiln and a calciner. Clinker burning at a temperature of about 1450 °C takes place in the internally fired rotary kiln and calcination, which is the most energy demanding process, takes place at lower temperature in the calciner. When dealing with NOx from solid fuel combustion it is important to consider reactions of volatile contents and char separately.Chapter 4 presents an overview of NOx from cement production. Thermal NOx dominates from rotary kilns, while NOx formation from fuel-N and reduction of NOx take place in calciners. NOx formation in the rotary kiln is mainly governed by the necessary clinker burning temperature and is not very amenable to control, while net NOx formation in calciners depends strongly on calciner design, calciner operation, fuel properties and on the NOx level from the rotary kiln. The low-NOx calciner types presently marketed are based on combinations of reburning, air staging and temperature control and seem equivalent in their ability to restrict NOx formation. If fuels with a significant volatile content (> 25%) are used, net reduction of kiln NOx typically takes place in calciners, whereas net NOx formation takes place when low-volatile fuels (
Original languageEnglish
Publication statusPublished - 1999

Cite this