TY - JOUR
T1 - Novel insights into the dynamics behavior of glucagon-like peptide-1 receptor with its small molecule agonists
AU - Girdhar, Khyati
AU - Dehury, Budheswar
AU - Kumar Singh, Mahender
AU - Daniel, Vineeth P.
AU - Choubey, Abhinav
AU - Dogra, Surbhi
AU - Kumar, Sunil
AU - Mondal, Prosenjit
PY - 2019
Y1 - 2019
N2 - The glucagon-like peptide-1 receptor (GLP-1R) is a well-known target of therapeutics industries for the treatment of various metabolic diseases like type 2 diabetes and obesity. The structural–functional relationships of small molecule agonists and GLP-1R are yet to be understood. Therefore, an attempt was made on structurally known GLP-1R agonists (Compound 1, Compound 2, Compound A, Compound B, and (S)-8) to study their interaction with the extracellular domain of GLP-1R. In this study, we explored the dynamics, intrinsic stability, and binding mechanisms of these molecules through computational modeling, docking, molecular dynamics (MD) simulations and molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) binding free energy estimation. Molecular docking study depicted that hydrophobic interaction (pi–pi stacking) plays a crucial role in maintaining the stability of the complex, which was also supported by intermolecular analysis from MD simulation study. Principal component analysis suggested that the terminal ends along with the turns/loops connecting adjacent helix and strands exhibit a comparatively higher movement of main chain atoms in most of the complexes. MM/PBSA binding free energy study revealed that non-polar solvation (van der Waals and electrostatic) energy subsidizes significantly to the total binding energy, and the polar solvation energy opposes the binding agonists to GLP-1R. Overall, we provide structural features information about GLP-1R complexes that would be conducive for the discovery of new GLP-1R agonists in the future for the treatment of various metabolic diseases. Communicated by Ramaswamy H. Sarma.
AB - The glucagon-like peptide-1 receptor (GLP-1R) is a well-known target of therapeutics industries for the treatment of various metabolic diseases like type 2 diabetes and obesity. The structural–functional relationships of small molecule agonists and GLP-1R are yet to be understood. Therefore, an attempt was made on structurally known GLP-1R agonists (Compound 1, Compound 2, Compound A, Compound B, and (S)-8) to study their interaction with the extracellular domain of GLP-1R. In this study, we explored the dynamics, intrinsic stability, and binding mechanisms of these molecules through computational modeling, docking, molecular dynamics (MD) simulations and molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) binding free energy estimation. Molecular docking study depicted that hydrophobic interaction (pi–pi stacking) plays a crucial role in maintaining the stability of the complex, which was also supported by intermolecular analysis from MD simulation study. Principal component analysis suggested that the terminal ends along with the turns/loops connecting adjacent helix and strands exhibit a comparatively higher movement of main chain atoms in most of the complexes. MM/PBSA binding free energy study revealed that non-polar solvation (van der Waals and electrostatic) energy subsidizes significantly to the total binding energy, and the polar solvation energy opposes the binding agonists to GLP-1R. Overall, we provide structural features information about GLP-1R complexes that would be conducive for the discovery of new GLP-1R agonists in the future for the treatment of various metabolic diseases. Communicated by Ramaswamy H. Sarma.
KW - Agonists
KW - Docking
KW - GLP-1R
KW - Molecular dynamics
KW - Type 2 diabetes
U2 - 10.1080/07391102.2018.1532818
DO - 10.1080/07391102.2018.1532818
M3 - Journal article
C2 - 30296922
AN - SCOPUS:85057332493
SN - 0739-1102
VL - 37
SP - 3976
EP - 3986
JO - Journal of Biomolecular Structure and Dynamics
JF - Journal of Biomolecular Structure and Dynamics
IS - 15
ER -