Nonparametric estimation of ultrasound pulses

Jørgen Arendt Jensen, Sidney Leeman

    Research output: Contribution to journalJournal articleResearchpeer-review

    520 Downloads (Pure)

    Abstract

    An algorithm for nonparametric estimation of 1D ultrasound pulses in echo sequences from human tissues is derived. The technique is a variation of the homomorphic filtering technique using the real cepstrum, and the underlying basis of the method is explained. The algorithm exploits a priori knowledge about the structure of RF line echo data and can employ a number of adjacent RF lines from an image. The prime application of the algorithm is to yield a pulse suitable for deconvolution algorithms. This will enable these algorithms to properly take into account the frequency dependence of the attenuation and its variation within a patient and among patients. It is also possible to use the estimated pulse for attenuation estimation, and the consistency of the assumptions underlying the proposed technique is demonstrated by its ability to recover low variance attenuation estimates in the normal liver from in vivo pulse-echo data. Estimates are given for 8 different patients
    Original languageEnglish
    JournalI E E E Transactions on Biomedical Engineering
    Volume41
    Issue number10
    Pages (from-to)929-936
    ISSN0018-9294
    DOIs
    Publication statusPublished - 1994

    Bibliographical note

    Copyright: 1994 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE

    Fingerprint

    Dive into the research topics of 'Nonparametric estimation of ultrasound pulses'. Together they form a unique fingerprint.

    Cite this