Abstract
The phase variable model is used commonly when simulating a motor drive system with a three-phase permanent magnet brushless DC (PMBLDC) motor. The phase variable model neglects core losses and this affects its accuracy when modelling fractional-slot machines. The inaccuracy of phase variable model of fractional-slot machines can be attributed to considerable armature flux harmonics, which causes an increased core loss. This study proposes a nonlinear phase variable model of PMBLDC motor that considers the core losses induced in the stator and the rotor. The core loss model is developed based on the detailed analysis of the flux path and the variation of flux in different components of the machine. A prototype of fractional slot axial flux PMBLDC in-wheel motor is used to assess the proposed nonlinear dynamic model.
Original language | English |
---|---|
Journal | IEEE Transactions on Industrial Electronics |
Volume | 64 |
Issue number | 12 |
Pages (from-to) | 9282-9280 |
Number of pages | 8 |
ISSN | 0278-0046 |
DOIs | |
Publication status | Published - 2017 |
Bibliographical note
(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Keywords
- Brushless DC (BLDC)
- Machines
- Axial flux machines
- Nonlinear model
- Dynamic model
- Segmented axial torus motor