Projects per year
Abstract
Nonlinear distortion added by the loudspeaker (often referred to as a receiver) in a hearing aid
reduces the signal-to-noise ratio in the acoustic output and may degrade the user’s ability to
understand speech. The balanced-armature-type loudspeakers predominantly used in hearing
aids are inherently nonlinear devices, since any displacement of the loudspeaker diaphragm in-
evitably changes the magnetic and electrical characteristics of the loudspeaker. Additionally, for
the balanced-armature loudspeaker the signal has to be transmitted through the magnetic domain
(as a magnetic
B
-field) and the linearity of the magnetic material is therefore of great importance.
This thesis describes the inherent nonlinear parameters of the balanced-armature loudspeaker
and demonstrates how the nonlinearity of these parameters may be reduced by design. A sim-
ple technique for incorporating magnetic leakage effects is introduced and it is shown how the
leakage affects the linearity of the loudspeaker. Magnetic hysteresis, saturation and eddy current
losses and how these effects might affect the performance of the loudspeaker are also discussed.
FEM simulation software is used to investigate magnetic effects and to validate simpler equivalent
circuit models. A large scale model of a balanced-armature loudspeaker has been developed and
its inherent nonlinear parameters have been measured and compared to the theoretically predicted
values. A measurement setup for determining the magnetic properties of soft magnetic materials
has also been developed, since it is of great importance to understand what kind of linear and
nonlinear transformations the magnetic materials impose on the signal.
In hearing aid applications the power efficiency of the loudspeaker is important because every
reduction in power consumption will help prolong battery life and thereby reduce the frequency
of necessary service checks. A great deal of the power consumed in a hearing aid goes into the
amplifier that drives the loudspeaker. If the efficiency of the balanced-armature loudspeaker can
be improved, the operation time of the hearing aid may be extended or the size of the hearing aid
could be reduced using a smaller battery, or new features and more advanced algorithms could
be embedded without compromising the operation time of the hearing aid. A new loudspeaker
efficiency performance metric is proposed and it is shown how the balanced-armature loudspeaker
may be optimized in terms of this.
The maximum level of the acoustic output of a balanced-armature loudspeaker is an impor-
tant performance parameter since these miniature loudspeakers sometimes need to be capable of
compensating for substantial hearing losses. It is demonstrated that magnetic saturation of the
loudspeaker armature is likely to be the most significant cause of compression in the balanced-
armature loudspeaker. It is furthermore shown which conditions should be fulfilled in order to
reduce the risk of armature saturation and thereby increase the maximum output and reduce distortion.
Original language | English |
---|
Publisher | Technical University of Denmark, Department of Electrical Engineering |
---|---|
Number of pages | 212 |
ISBN (Print) | 978-87-92465-48-1 |
Publication status | Published - 2014 |
Fingerprint
Dive into the research topics of 'Nonlinear Distortion Mechanisms and Efficiency of Balanced-Armature Loudspeakers'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Nonlinear balanced armature receivers
Jensen, J. (PhD Student), Agerkvist, F. T. (Main Supervisor), Harte, J. (Supervisor), Brunskog, J. (Examiner), Bard, D. (Examiner) & Klippel, W. (Examiner)
01/07/2010 → 15/11/2014
Project: PhD