Non-Uniform Heat Transfer in Thermal Regenerators

Jesper Buch Jensen

    Research output: Book/ReportPh.D. thesis

    768 Downloads (Pure)


    This thesis presents investigations on the heat transfer in complex heat ex- changers in general and in regenerative heat exchangers (regenerators) in par- ticular. The motivation for this work is a result of inconsistencies obeserved in the results from a series of experiments on active magnetic regenerators (AMRs) with parallel plates. The results suggest that random variations in the regenerator geometries causes maldistributed fluid flow inside the regener- ators, which affects the regenerator performance. In order to study the heat transfer processes in regenerators with non-uniform geometries, a numerical model, which simulates a single-blow operation in a parallel-plate regenerator, was developed and used to model the heat transfer under various conditions. In addition to the modeling of the heat transfer, a series of experiments on passive regenerators with non-uniform, but precisely controlled, geometries was performed. The objective of performing these experiments was in part to eval- uate the direct applicability of the model, which only simulates one half of the regenerator cycle, to a practical situation where the regenerator is running con- tinuously by comparing the results gained. Additionally, the experiments gave real comparative results, whereas the model to a certain degree more served to provide insight to the heat transfer processes taking place inside the regenera- tors, something that would be - if not impossible - then highly impractical to do experimentally. It has been found that non-uniformity in the plate spacings of non-uniform regenerators can have a significant impact on the regenerator effectiveness, particularly for regenerators with small plate spacings. The observed reduc- tions in effectiveness have furthermore been found to alter the optimim plate spacing, and decreasing the plate spacing beoynd a certain point can even hurt the performance. Inter-channel heat transfer effects - or thermal cross-talk - have also been in- vestigated and the results show that not only the size of the plate spacings, but also their mutual order, can affect the heat transfer significantly.
    Original languageEnglish
    Place of PublicationKgs. Lyngby, Denmark
    PublisherTechnical University of Denmark
    Publication statusPublished - Oct 2011


    Dive into the research topics of 'Non-Uniform Heat Transfer in Thermal Regenerators'. Together they form a unique fingerprint.

    Cite this