Projects per year
Abstract
Stretch-dominated truss and plate microstructures are contenders in the quest for realizing architected materials with extreme stiffness and strength. In the low volume fraction limit, closed-cell isotropic plate microstructures meet theoretical upper bounds on stiffness but have low buckling strength, whereas open-cell truss microstructures have high buckling strength at the cost of significantly reduced stiffness. At finite volume fractions, the picture becomes less clear but both are outperformed by hollow truss lattice and hierarchical microstructures in terms of buckling strength. Despite significant advances in manufacturing methods, hollow and multi-scale hierarchical microstructures are still challenging to build. The question is if there exist realizable microstructures providing stiffness and strength matching or even beating hard-to-realize hollow or hierarchical microstructures?
Herein, single-scale non-hierarchical (first order) microstructures that beat the buckling strength of hollow truss lattice structures by a factor of 2.4 and first- and second-order plate microstructures by factors of 5 and 1.4, respectively, are systematically designed, built, and tested. Stiffness of the microstructures is within 40% of theoretical bounds and beats both truss and second order plate microstructures. The microstructures are realized with 3D printing. Experiments validate theoretical predictions and additional insight is provided through numerical modelling of a CT-scanned sample.
Herein, single-scale non-hierarchical (first order) microstructures that beat the buckling strength of hollow truss lattice structures by a factor of 2.4 and first- and second-order plate microstructures by factors of 5 and 1.4, respectively, are systematically designed, built, and tested. Stiffness of the microstructures is within 40% of theoretical bounds and beats both truss and second order plate microstructures. The microstructures are realized with 3D printing. Experiments validate theoretical predictions and additional insight is provided through numerical modelling of a CT-scanned sample.
Original language | English |
---|---|
Article number | 2211561 |
Journal | Advanced Functional Materials |
Volume | 33 |
Issue number | 13 |
Number of pages | 7 |
ISSN | 1616-301X |
DOIs | |
Publication status | Published - 2023 |
Keywords
- Buckling strength
- Stiffness
- Architected material
- Hierarchy
- Optimization
Fingerprint
Dive into the research topics of 'Non-hierarchical architected materials with extreme stiffness and strength'. Together they form a unique fingerprint.Projects
- 1 Finished
-
InnoTop: InnoTop, Interactive, Non-Linear, High-Resolution Topology Optimization
Sigmund, O. (Project Coordinator), Petersen, M. L. (Project Manager), Carlberg, L. K. (Project Manager), Aage, N. (Project Participant), Andreasen, C. S. (Project Participant), Wang, F. (Project Participant), Bærentzen, J. A. (Project Participant) & Assentoft, D. (Project Manager)
01/09/2017 → 31/08/2024
Project: Research