Abstract
Phase-insensitive optical amplification of an unknown quantum state is known to be a fundamentally noisy operation that inevitably adds noise to the amplified state(1-5). However, this fundamental noise penalty in amplification can be circumvented by resorting to a probabilistic scheme as recently proposed and demonstrated in refs 6-8. These amplifiers are based on highly non-classical resources in a complex interferometer. Here we demonstrate a probabilistic quantum amplifier beating the fundamental quantum limit using a thermal-noise source and a photon-number-subtraction scheme(9). The experiment shows, surprisingly, that the addition of incoherent noise leads to a noiselessly amplified output state with a phase uncertainty below the uncertainty of the state before amplification. This amplifier might become a valuable quantum tool in future quantum metrological schemes and quantum communication protocols.
Original language | English |
---|---|
Journal | Nature Physics |
Volume | 6 |
Issue number | 10 |
Pages (from-to) | 767-771 |
ISSN | 1745-2473 |
DOIs | |
Publication status | Published - 2010 |