TY - JOUR
T1 - Nitrate removal from aquaculture effluents using woodchip bioreactors improved by adding sulfur granules and crushed seashells
AU - von Ahnen, Mathis
AU - Pedersen, Per Bovbjerg
AU - Dalsgaard, Johanne
PY - 2018
Y1 - 2018
N2 - This study examined the effects on nitrate removal when adding sulfur granules and crushed seashells to a woodchip bioreactor treating aquaculture effluents. Using a central composite design, the two components were added at three levels (0.000, 0.125 and 0.250 m3/m3 bioreactor volume) to 13 laboratory-scale woodchip bioreactors, and a response surface method was applied to find and model the optimal mixture ratios with respect to reactor performance. Adding 0.125 m3/m3 sulfur granules improved the total N removal rate from 3.27±0.38 to 8.12±0.49 g N/m3/d compared to pure woodchips. Furthermore, the inclusion of crushed seashells together with sulfur granules helped to maintain the pH above 7.4 and prevent a production (i.e., release) of nitrite. According to the modeled response surfaces, a sulfur granule:crushed seashell:woodchip mixture ratio containing about 0.2 m3 sulfur granules and 0.1 m3 crushed seashells per m3 reactor volume would give the best results with respect to high N removal and minimal nitrite release. In conclusion, the study showed that N removal in woodchip bioreactors may be improved by adding sulfur granules and seashells, contributing to the optimization of woodchip performance in treating aquaculture effluents
AB - This study examined the effects on nitrate removal when adding sulfur granules and crushed seashells to a woodchip bioreactor treating aquaculture effluents. Using a central composite design, the two components were added at three levels (0.000, 0.125 and 0.250 m3/m3 bioreactor volume) to 13 laboratory-scale woodchip bioreactors, and a response surface method was applied to find and model the optimal mixture ratios with respect to reactor performance. Adding 0.125 m3/m3 sulfur granules improved the total N removal rate from 3.27±0.38 to 8.12±0.49 g N/m3/d compared to pure woodchips. Furthermore, the inclusion of crushed seashells together with sulfur granules helped to maintain the pH above 7.4 and prevent a production (i.e., release) of nitrite. According to the modeled response surfaces, a sulfur granule:crushed seashell:woodchip mixture ratio containing about 0.2 m3 sulfur granules and 0.1 m3 crushed seashells per m3 reactor volume would give the best results with respect to high N removal and minimal nitrite release. In conclusion, the study showed that N removal in woodchip bioreactors may be improved by adding sulfur granules and seashells, contributing to the optimization of woodchip performance in treating aquaculture effluents
U2 - 10.2166/wst.2018.148
DO - 10.2166/wst.2018.148
M3 - Journal article
C2 - 29757182
VL - 77
SP - 2301
EP - 2310
JO - Water Science and Technology
JF - Water Science and Technology
SN - 0273-1223
IS - 9
ER -