Abstract
The use of metal-based heterogeneous catalysts for the degradation of N-containing organic dyes has attracted much attention due to their excellent treatment efficiency and capability. Here, we report the synthesis of heterometals (Ni and Pd)-incorporated Fe3O4 (Ni-Pd/Fe3O4) yolk-shelled nanospheres for the catalytic reduction of N-containing organic dyes using a facile combination of solvothermal treatment and high-temperature annealing steps. Benefiting from the magnetic properties and the yolk-shelled structure of the Fe3O4 support, as well as the uniformly dispersed active heterometals incorporated in the shell and yolk of spherical Fe3O4 nanoparticles, the as-prepared Ni-Pd/Fe3O4 composite shows excellent recyclability and enhanced catalytic activity for three N-containing organic dyes (e.g., 4-nitrophenol, Congo red, and methyl orange) compared with its mono metal counterparts (e.g., Ni/Fe3O4 and Pd/Fe3O4). In the 4-nitrophenol reduction reaction, the catalytic activity of Ni-Pd/Fe3O4 was superior to many Fe3O4-supported nanocatalysts reported within the last five years. This work provides an effective strategy to boost the activity of iron oxide-based catalytic materials via dual or even multiple heterometallic incorporation strategy and sheds new light on environmental catalysis.
Original language | English |
---|---|
Article number | 190 |
Journal | Catalysts |
Volume | 13 |
Issue number | 1 |
Number of pages | 12 |
ISSN | 2073-4344 |
DOIs | |
Publication status | Published - 2023 |
Keywords
- FeO nanospheres
- Heterometal incorporation
- Magnetic catalyst
- N-containing unsaturated compound
- Reduction reaction