NetH2pan: A Computational Tool to Guide MHC peptide prediction on Murine Tumors

Christa I DeVette, Massimo Andreatta, Wilfried Bardet, Steven J Cate, Vanessa Isabell Jurtz, Kenneth W Jackson, Alana L Welm, Morten Nielsen, William H Hildebrand*

*Corresponding author for this work

    Research output: Contribution to journalJournal articleResearchpeer-review

    194 Downloads (Pure)


    With the advancement of personalized cancer immunotherapies, new tools are needed to identify tumor antigens and evaluate T-cell responses in model systems, specifically those that exhibit clinically relevant tumor progression. Key transgenic mouse models of breast cancer are generated and maintained on the FVB genetic background, and one such model is the mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT) mouse - an immunocompetent transgenic mouse that exhibits spontaneous mammary tumor development and metastasis with high penetrance. Backcrossing the MMTV-PyMT mouse from the FVB strain onto a C57BL/6 genetic background, in order to leverage well-developed C57BL/6 immunological tools, results in delayed tumor development and variable metastatic phenotypes. Therefore, we initiated characterization of the FVB MHC Class I H-2q haplotype to establish useful immunological tools for evaluating antigen specificity in the murine FVB strain. Our study provides the first detailed molecular and immunoproteomic characterization of the FVB H-2q MHC Class I alleles, including >8500 unique peptide ligands, a multi-allele murine MHC peptide prediction tool, and in vivo validation of these data using MMTV-PyMT primary tumors. This work allows researchers to rapidly predict H-2 peptide ligands for immune testing, including, but not limited to, the MMTV-PyMT model for metastatic breast cancer.
    Original languageEnglish
    JournalCancer Immunology Research
    Issue number6
    Pages (from-to)636-644
    Number of pages8
    Publication statusPublished - 2018

    Fingerprint Dive into the research topics of 'NetH2pan: A Computational Tool to Guide MHC peptide prediction on Murine Tumors'. Together they form a unique fingerprint.

    Cite this