Abstract
This paper demonstrates fault diagnosis on unmanned underwater vehicles (UUV) based on analysis of structure of the nonlinear dynamics. Residuals are generated using dierent approaches in structural analysis followed by statistical change detection. Hypothesis testing thresholds are made signal based to cope with non-ideal properties seen in real data. Detection of both sensor and thruster failures are demonstrated. Isolation is performed using the residual signature of detected faults and the change detection algorithm is used to assess severity of faults by estimating their magnitude. Numerical simulations and sea trial data show results with very favourable balance between detection and false alarm probabilities.
Original language | English |
---|---|
Title of host publication | Proceedings of the 19th IFAC World Congress |
Publisher | International Federation of Automatic Control |
Publication date | 2014 |
Pages | 9654-9660 |
DOIs | |
Publication status | Published - 2014 |
Event | 19th World Congress of the International Federation of Automatic Control (IFAC 2014) - Cape Town, South Africa Duration: 24 Aug 2014 → 29 Aug 2014 http://www.ifac2014.org/ |
Conference
Conference | 19th World Congress of the International Federation of Automatic Control (IFAC 2014) |
---|---|
Country/Territory | South Africa |
City | Cape Town |
Period | 24/08/2014 → 29/08/2014 |
Other | The theme of the congress: “Promoting automatic control for the benefit of humankind” |
Internet address |
Series | I F A C Workshop Series |
---|---|
Number | 1 |
Volume | 19 |
ISSN | 1474-6670 |