TY - JOUR
T1 - Nanostructured La0.75Sr0.25Cr0.5Mn0.5O3-Ce0.8Sm0.2O2 Heterointerfaces as All-Ceramic Functional Layers for Solid Oxide Fuel Cell Applications
AU - Sirvent, Juan de Dios
AU - Carmona, Albert
AU - Rapenne, Laetitia
AU - Chiabrera, Francesco
AU - Morata, Alex
AU - Burriel, Mónica
AU - Baiutti, Federico
AU - Tarancón, Albert
PY - 2022
Y1 - 2022
N2 - The use of nanostructured interfaces and advanced functional materials opens up a new playground in the field of solid oxide fuel cells. In this work, we present two all-ceramic thin-film heterostructures based on samarium-doped ceria and lanthanum strontium chromite manganite as promising functional layers for electrode application. The films were fabricated by pulsed laser deposition as bilayers or self-assembled intermixed nanocomposites. The microstructural characterization confirmed the formation of dense, well-differentiated, phases and highlighted the presence of strong cation intermixing in the case of the nanocomposite. The electrochemical properties-solid/gas reactivity and in-plane conductivity-are strongly improved for both heterostructures with respect to the single-phase constituents under anodic conditions (up to fivefold decrease of area-specific resistance and 3 orders of magnitude increase of in-plane conductivity with respect to reference single-phase materials). A remarkable electrochemical activity was also observed for the nanocomposite under an oxidizing atmosphere, with no significant decrease in performance after 400 h of thermal aging. This work shows how the implementation of nanostructuring strategies not only can be used to tune the properties of functional films but also results in a synergistic enhancement of the electrochemical performance, surpassing the parent materials and opening the field for the fabrication of high-performance nanostructured functional layers for application in solid oxide fuel cells and symmetric systems.
AB - The use of nanostructured interfaces and advanced functional materials opens up a new playground in the field of solid oxide fuel cells. In this work, we present two all-ceramic thin-film heterostructures based on samarium-doped ceria and lanthanum strontium chromite manganite as promising functional layers for electrode application. The films were fabricated by pulsed laser deposition as bilayers or self-assembled intermixed nanocomposites. The microstructural characterization confirmed the formation of dense, well-differentiated, phases and highlighted the presence of strong cation intermixing in the case of the nanocomposite. The electrochemical properties-solid/gas reactivity and in-plane conductivity-are strongly improved for both heterostructures with respect to the single-phase constituents under anodic conditions (up to fivefold decrease of area-specific resistance and 3 orders of magnitude increase of in-plane conductivity with respect to reference single-phase materials). A remarkable electrochemical activity was also observed for the nanocomposite under an oxidizing atmosphere, with no significant decrease in performance after 400 h of thermal aging. This work shows how the implementation of nanostructuring strategies not only can be used to tune the properties of functional films but also results in a synergistic enhancement of the electrochemical performance, surpassing the parent materials and opening the field for the fabrication of high-performance nanostructured functional layers for application in solid oxide fuel cells and symmetric systems.
KW - Thin films
KW - Hydrogen oxidation reaction
KW - Symmetric functional layers
KW - Solid oxide cells
KW - Nanocomposites
U2 - 10.1021/acsami.2c14044
DO - 10.1021/acsami.2c14044
M3 - Journal article
C2 - 36070857
SN - 1944-8244
VL - 14
SP - 42178
EP - 42187
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 37
ER -