Nanopillar Filters for Surface-Enhanced Raman Spectroscopy

We present a simple, robust, and automated molecule extraction technique based on a centrifugal microfluidic platform. Fast and facile extraction of a food adulterant (melamine) from a complex sample medium (milk) on a SERS substrate is demonstrated. The unique characteristic of the detection method is the obtained "filter paper/chromatographic" effect which combines centrifugal force and wetting properties of the SERS substrate. The work addresses issues related to SERS-based detection of analytes in complex media, which is important for realizing next generation SERS platforms applicable for a broad variety of real-life applications.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics
Contributors: Durucan, O., Rindzevicius, T., Schmidt, M. S., Matteucci, M., Boisen, A.
Pages: 1400-1404
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: ACS Sensors
Volume: 2
Issue number: 10
ISSN (Print): 2379-3694
Ratings:
Scopus rating (2017): CiteScore 5.42 SJR 1.895 SNIP 1.258
Web of Science (2017): Impact factor 5.711
Web of Science (2017): Indexed yes
Original language: English
Keywords: SERS, Wicking, Microfluidics, Nanopillars, Filtration, Melamine
DOIs:
10.1021/acssensors.7b00499
Source: FindIt
Source ID: 2390574014
Research output: Contribution to journal › Letter – Annual report year: 2017 › Research › peer-review