Nanopatterning on Nonplanar and Fragile Substrates with Ice Resists

Anpan Han, Aaron Kuan, Jene Golovchenko, Daniel Branton

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Electron beam (e-beam) lithography using polymer resists is an important technology that provides the spatial resolution needed for nanodevice fabrication. But it is often desirable to pattern nonplanar structures on which polymeric resists cannot be reliably applied. Furthermore, fragile substrates, such as free-standing nanotubes or thin films, cannot tolerate the vigorous mechanical scrubbing procedures required to remove all residual traces of the polymer resist. Here we demonstrate several examples where e-beam lithography using an amorphous ice resist eliminates both of these difficulties and enables the fabrication of unique nanoscale device structures in a process we call ice lithography.(1,2) We demonstrate the fabrication of micro- and nanostructures on the tip of atomic force microscope probes, microcantilevers, transmission electron microscopy grids, and suspended single-walled carbon nanotubes. Our results show that by using amorphous water ice as an e-beam resist, a new generation of nanodevice structures can be fabricated on nonplanar or fragile substrates.
Original languageEnglish
JournalNano letters
Volume12
Issue number2
Pages (from-to)1018-1021
Number of pages4
ISSN1530-6984
DOIs
Publication statusPublished - 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'Nanopatterning on Nonplanar and Fragile Substrates with Ice Resists'. Together they form a unique fingerprint.

Cite this