Mussel-inspired co-deposition to enhance bisphenol A removal in a bifacial enzymatic membrane reactor

Xiaotong Cao, Jianquan Luo, John M. Woodley, Yinhua Wan*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

72 Downloads (Pure)

Abstract

Abstract In this study, the biocatalytic membranes were prepared by ‘reverse filtration’ of laccase and subsequently various mussel-inspired coating strategies: single dopamine (DA) deposition, DA/polyethyleneimine (PEI) co-deposition, and DA/Cu2+ co-deposition, where nanofiltration (NF) membranes were used as the matrix to further exploit the potential of the biocatalytic membranes. such prepared biocatalytic membranes were enzymatically active on both sides, making it possible to construct a bifacial enzymatic membrane reactor (EMR) for highly efficient micro-pollutants removal (taking bisphenol A (BPA) as an example). Compared with the single polydopamine (PDA) coated membrane, the biocatalytic membranes prepared by DA/PEI and DA/Cu2+ co-depositions exhibited much better performances in terms of enzyme loading, activity and permeability as well as the stability of immobilized enzyme. The BPA removal efficiency was highest for the EMR with the PDA/Cu2+ coated membrane attributed to copper-enhanced electron transfer, while it was lowest for the EMR with the PDA/PEI coated membrane due to the high diffusional resistance of the dense PDA/PEI layer. Meanwhile, the mechanism for performance deterioration of biocatalytic membrane during BPA treatment was revealed, and it was found that the trade-off between BPA removal efficiency and long-term stability could be broken by applying the bifacial EMR with PDA/Cu2+ coated membrane in flow-through mode, since the pressure-induced convective mass transfer improved the substrate accessibility to enzyme together with products removal.
Original languageEnglish
JournalChemical Engineering Journal
Volume336
Pages (from-to)315–324
ISSN1385-8947
DOIs
Publication statusPublished - 2018

Keywords

  • Laccase immobilization
  • Biocatalytic membrane
  • Micro-pollutant
  • Tertiary wastewater treatment
  • Enzymatic membrane reactor

Fingerprint Dive into the research topics of 'Mussel-inspired co-deposition to enhance bisphenol A removal in a bifacial enzymatic membrane reactor'. Together they form a unique fingerprint.

Cite this