Multispectral mid-infrared imaging using frequency upconversion

Nicolai Højer Sanders, Jeppe Seidelin Dam, Ole Bjarlin Jensen, Peter Tidemand-Lichtenberg, Christian Pedersen

    Research output: Contribution to journalConference articleResearchpeer-review

    531 Downloads (Pure)

    Abstract

    It has recently been shown that it is possible to upconvert infrared images to the near infrared region with high quantum efficiency and low noise by three-wave mixing with a laser field [1]. If the mixing laser is single-frequency, the upconverted image is simply a band-pass filtered version of the infrared object field, with a bandwidth corresponding given by the acceptance parameter of the conversion process, and a center frequency given by the phase-match condition. Tuning of the phase-matched wavelengths has previously been demonstrated by changing the temperature [2] or angle [3 Keywords: Infrared imaging, nonlinear frequency conversion, diode lasers, upconversion ] of the nonlinear material. Unfortunately, temperature tuning is slow, and angle tuning typically results in alignment issues. Here we present a novel approach where the wavelength of the mixing field is used as a tuning parameter, allowing for fast tuning and hence potentially fast image acquisition, paving the way for upconversion based real time multispectral imaging. In the present realization the upconversion module consists of an external cavity tapered diode laser in a Littrow configuration with a computer controlled feedback grating. The output from a tunable laser is used as seed for a fiber amplifier system, boosting the power to approx. 3 W over the tuning range from 1025 to 1085 nm. Using a periodically poled lithium niobate crystal, the infrared wavelength that can be phase-matched is tunable over more than 200 nm. Using a crystal with multiple poling periods allows for upconversion within the entire transparency range of the nonlinear material.
    Original languageEnglish
    Article number86040R
    JournalProceedings of SPIE - The International Society for Optical Engineering
    Volume8604
    Number of pages6
    ISSN0277-786X
    DOIs
    Publication statusPublished - 2013
    EventSPIE Photonics West LASE 2013 - San Francisco, United States
    Duration: 2 Feb 20137 Feb 2013

    Conference

    ConferenceSPIE Photonics West LASE 2013
    Country/TerritoryUnited States
    CitySan Francisco
    Period02/02/201307/02/2013

    Bibliographical note

    Copyright 2013 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

    Keywords

    • Fiber amplifiers
    • Infrared imaging
    • Mixing
    • Phase matching
    • Semiconductor lasers

    Fingerprint

    Dive into the research topics of 'Multispectral mid-infrared imaging using frequency upconversion'. Together they form a unique fingerprint.

    Cite this