Multiscale analysis of Ni-YSZ and Ni-CGO anode based SOFC degradation: From local microstructural variation to cell electrochemical performance

Fiammetta Rita Bianchi*, Aiswarya Krishnakumar Padinjarethil, Anke Hagen, Barbara Bosio

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Nickel based fuel electrodes are widely used for commercial solid oxide fuel cells showing a high catalytic activity, despite of involving severe microstructural changes which reduce the system lifetime. Needing a detailed knowledge of such phenomena, the authors compare the behaviour of two state-of-the-art planar cells, Ni-YSZ based anode supported cell and Ni-CGO based electrolyte supported cell, working for 1000 hours under a galvanostatic operation with H2 rich feed. Following a multiscale approach, the system was analysed in terms of both global performance and local properties. Experimental observations through electrochemical characterization and microstructural analysis laid the basis for developing a physics-based model able to predict the cell operation at reference and aged status. Indeed, the kinetics is expressed as a function of microstructural features and considers the time evolution of some parameters. Ni-based electrode was identified as the first source of degradation due to Ni instability resulting in a reduction of catalytic activity and conductivity, correlated mainly to Ni particle coarsening and migration respectively. Each degradation mechanism prevailed depending on the material structure (i.e., initial particle size and distribution) and imposed working conditions (i.e., temperature, load and gas composition).
Original languageEnglish
Article number142589
JournalElectrochimica Acta
Volume460
Number of pages12
ISSN0013-4686
DOIs
Publication statusPublished - 2023

Bibliographical note

The research leading of these results has received funding from the European Horizon 2020—Research and Innovation Framework program (H2020-JTI-FCH-2018-1) under grant agreement n° 825027 (AD ASTRA project).

Keywords

  • Solid oxide fuel cell
  • Ni based cermet degradation
  • Calendar life test
  • Microstructural analysis
  • Local modelling

Fingerprint

Dive into the research topics of 'Multiscale analysis of Ni-YSZ and Ni-CGO anode based SOFC degradation: From local microstructural variation to cell electrochemical performance'. Together they form a unique fingerprint.

Cite this