Multipole plasmons and their disappearance in few-nanometre silver nanoparticles - DTU Orbit (12/11/2019)

Multipole plasmons and their disappearance in few-nanometre silver nanoparticles

Electron energy-loss spectroscopy can be used for detailed spatial and spectral characterization of optical excitations in metal nanoparticles. In previous electron energy-loss experiments on silver nanoparticles with radii smaller than 20 nm, only the dipolar surface plasmon resonance was assumed to play a role. Here, applying electron energy-loss spectroscopy to individual silver nanoparticles encapsulated in silicon nitride, we observe besides the usual dipole resonance an additional surface plasmon resonance corresponding to higher angular momenta for nanoparticle radii as small as 4 nm. We study the radius and electron beam impact position dependence of both resonances separately. For particles smaller than 4 nm in radius the higher-order surface plasmon mode disappears, in agreement with generalized non-local optical response theory, while the dipole resonance blueshift exceeds our theoretical predictions. Unlike in optical spectra, multipole surface plasmons are important in electron energy-loss spectra even of ultrasmall metallic nanoparticles.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, Theoretical Nanotechnology, Department of Photonics Engineering, Center for Electron Nanoscopy, Structured Electromagnetic Materials, Center for Nanostructured Graphene, Utrecht University
Contributors: Raza, S., Kadkhodazadeh, S., Christensen, T., Di Vece, M., Wubs, M., Mortensen, N. A., Stenger, N.
Number of pages: 9
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Nature Communications
Volume: 6
Article number: 8788
ISSN (Print): 2041-1723
Ratings:
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 11.23 SJR 6.287 SNIP 2.815
Web of Science (2015): Indexed yes
Original language: English
Electronic versions:
ncomms9788.pdf
DOIs:
10.1038/ncomms9788

Bibliographical note
This work is licensed under a Creative Commons Attribution 4.0 International License.
Source: FindIt
Source ID: 274791271
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review