TY - JOUR
T1 - Multipoint observations of coronal mass ejection and solar energetic particle events on Mars and Earth during November 2001
AU - Falkenberg, Thea Vilstrup
AU - Vennerstrøm, Susanne
AU - Brain, D. A.
AU - Delory, G.
AU - Taktakishvili, A.
PY - 2011
Y1 - 2011
N2 - Multipoint spacecraft observations provide unique opportunities to constrain the propagation and evolution of interplanetary coronal mass ejections (ICMEs) throughout the heliosphere. Using Mars Global Surveyor (MGS) data to study both ICME and solar energetic particle (SEP) events at Mars and OMNI and Geostationary Operational Environmental Satellite (GOES) data to study ICMEs and SEPs at Earth, we present a detailed study of three CMEs and flares in late November 2001. In this period, Mars trailed Earth by 56 degrees solar longitude so that the two planets occupied interplanetary magnetic field lines separated by only similar to 25 degrees. We model the interplanetary propagation of CME events using the ENLIL version 2.6 3-D MHD code coupled with the Wang-Sheeley-Arge version 1.6 potential source surface model, using Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) images to determine CME input parameters. We find that multipoint observations are essential to constrain the simulations of ICME propagation, as two very different ICMEs may look very similar in only one observational location. The direction and width of the CME as parameters essential to a correct estimation of arrival time and amplitude of the ICME signal. We find that these are problematic to extract from the analysis of SOHO/LASCO images commonly used for input to ICME propagation models. We further confirm that MGS magnetometer and electron reflectometer data can be used to study not only ICME events but also SEP events at Mars, with good results providing a consistent picture of the events when combined with near-Earth data.
AB - Multipoint spacecraft observations provide unique opportunities to constrain the propagation and evolution of interplanetary coronal mass ejections (ICMEs) throughout the heliosphere. Using Mars Global Surveyor (MGS) data to study both ICME and solar energetic particle (SEP) events at Mars and OMNI and Geostationary Operational Environmental Satellite (GOES) data to study ICMEs and SEPs at Earth, we present a detailed study of three CMEs and flares in late November 2001. In this period, Mars trailed Earth by 56 degrees solar longitude so that the two planets occupied interplanetary magnetic field lines separated by only similar to 25 degrees. We model the interplanetary propagation of CME events using the ENLIL version 2.6 3-D MHD code coupled with the Wang-Sheeley-Arge version 1.6 potential source surface model, using Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) images to determine CME input parameters. We find that multipoint observations are essential to constrain the simulations of ICME propagation, as two very different ICMEs may look very similar in only one observational location. The direction and width of the CME as parameters essential to a correct estimation of arrival time and amplitude of the ICME signal. We find that these are problematic to extract from the analysis of SOHO/LASCO images commonly used for input to ICME propagation models. We further confirm that MGS magnetometer and electron reflectometer data can be used to study not only ICME events but also SEP events at Mars, with good results providing a consistent picture of the events when combined with near-Earth data.
U2 - 10.1029/2010JA016279
DO - 10.1029/2010JA016279
M3 - Journal article
SN - 2169-9380
VL - 116
SP - 1
EP - 15
JO - Journal of Geophysical Research: Atmospheres
JF - Journal of Geophysical Research: Atmospheres
ER -