@inproceedings{c7c6f14bba6b4bf994e4e38adda241f9,
title = "Multimodal modelling of uneven batch data",
abstract = "This work explores the application of a novel tri-linear regression methodology known as Shifted Covariates REgression Analysis for Multi-way data (SCREAM) to predict the quality of a fed-batch process. The SCREAM model shows promise as it is the only known multilinear regression tool that can directly handle three-way data arrays of different lengths. Thus, it provides an alternative modelling tool that does not require complicated time warping methods as a preprocessing step. The model was tested on a simulated fed-batch dataset based on industrial simulation of penicillin production. Variations were intentionally included in the simulations to create uneven data arrays. The SCREAM model outperforms traditional staples of multivariate models like NPLS and UPLS when warping is not considered and thus shows promise for application in fed-batch processes.",
keywords = "Fed-Batch, Multimodal Modelling, PLS, Multivariate analysis",
author = "Magnusson, {Atli Freyr} and Jari Pajander and G{\"u}rkan Sin and Stocks, {Stuart M.}",
year = "2022",
doi = "10.1016/B978-0-323-85159-6.50357-2",
language = "English",
series = "Computer Aided Chemical Engineering",
publisher = "Elsevier",
pages = "2143--2148",
editor = "Yamashita, {Yoshiyuki } and Kano, {Manabu }",
booktitle = "Proceedings of the 14th International Symposium on Process Systems Engineering",
address = "United Kingdom",
note = "14th International Symposium on Process Systems Engineering (PSE 2021+) ; Conference date: 19-06-2022 Through 23-06-2022",
}