TY - JOUR
T1 - Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links
AU - Iglesias Olmedo, Miguel
AU - Zuo, Tianjian
AU - Jensen, Jesper Bevensee
AU - Zhong, Qiwen
AU - Xu, Xiaogeng
AU - Popov, Sergei
AU - Tafur Monroy, Idelfonso
PY - 2014
Y1 - 2014
N2 - Short range optical data links are experiencing bandwidth limitations making it very challenging to cope with the growing data transmission capacity demands. Parallel optics appears as a valid short-term solution. It is, however, not a viable solution in the long-term because of its complex optical packaging. Therefore, increasing effort is now put into the possibility of exploiting higher order modulation formats with increased spectral efficiency and reduced optical transceiver complexity. As these type of links are based on intensity modulation and direct detection, modulation formats relying on optical coherent detection can not be straight forwardly employed. As an alternative and more viable solution, this paper proposes the use of carrierless amplitude phase (CAP) in a novel multiband approach (MultiCAP) that achieves record spectral efficiency, increases tolerance towards dispersion and bandwidth limitations and reduces the complexity of the transceiver. We report on numerical simulations and experimental demonstrations with capacity beyond 100 Gb/s transmission using a single externally modulated laser (EML). In addition, an extensive comparison with conventional CAP is also provided. The reported experiment uses MultiCAP to achieve 102.4 Gb/s transmission, corresponding to a data payload of 95.2 Gb/s error free transmission by using a 7% forward error correction (FEC) code. The signal is successfully recovered after 15 km of standard single mode fiber (SSMF) in a system limited by a 3 dB bandwidth of 14 GHz.
AB - Short range optical data links are experiencing bandwidth limitations making it very challenging to cope with the growing data transmission capacity demands. Parallel optics appears as a valid short-term solution. It is, however, not a viable solution in the long-term because of its complex optical packaging. Therefore, increasing effort is now put into the possibility of exploiting higher order modulation formats with increased spectral efficiency and reduced optical transceiver complexity. As these type of links are based on intensity modulation and direct detection, modulation formats relying on optical coherent detection can not be straight forwardly employed. As an alternative and more viable solution, this paper proposes the use of carrierless amplitude phase (CAP) in a novel multiband approach (MultiCAP) that achieves record spectral efficiency, increases tolerance towards dispersion and bandwidth limitations and reduces the complexity of the transceiver. We report on numerical simulations and experimental demonstrations with capacity beyond 100 Gb/s transmission using a single externally modulated laser (EML). In addition, an extensive comparison with conventional CAP is also provided. The reported experiment uses MultiCAP to achieve 102.4 Gb/s transmission, corresponding to a data payload of 95.2 Gb/s error free transmission by using a 7% forward error correction (FEC) code. The signal is successfully recovered after 15 km of standard single mode fiber (SSMF) in a system limited by a 3 dB bandwidth of 14 GHz.
KW - Fiber optics communication
KW - Multiband carrierless amplitude phase modulation (MultiCAP)
KW - Short range communications
U2 - 10.1109/JLT.2013.2284926
DO - 10.1109/JLT.2013.2284926
M3 - Journal article
SN - 0733-8724
VL - 32
SP - 798
EP - 804
JO - Journal of Lightwave Technology
JF - Journal of Lightwave Technology
IS - 4
ER -