Multi-agent based modeling for electric vehicle integration in a distribution network operation - DTU Orbit (13/08/2019)

Multi-agent based modeling for electric vehicle integration in a distribution network operation

The purpose of this paper is to present a multi-agent based modeling technology for simulating and operating a hierarchical energy management of a power distribution system with focus on EVs integration. The proposed multi-agent system consists of four types of agents: i) Distribution system operator (DSO) technical agent and ii) DSO market agents that both belong to the top layer of the hierarchy and their roles are to manage the distribution network by avoiding grid congestions and using congestion prices to coordinate the energy scheduled; iii) Electric vehicle virtual power plant agents are in the middle level of the hierarchy and their roles are to manage the charge process of the electric vehicles; iv) Electric vehicle agents are placed at the bottom layer of the hierarchy and they represent electric vehicle owners with different users’ profiles. To demonstrate the coordination behavior of the proposed system, a multi-agent simulation platform is developed based on the co-simulation environment of JACK, Matlab and GAMS. The aim of the multi-agent system is to simulate the collaborative (all agents contribute to achieve an optimized global performance) but also competitive environment (each agent will try to increase its utilities or reduce its costs). [All rights reserved Elsevier].

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Center for Electric Power and Energy, Energy System Management, Department of Automation, Risø National Laboratory for Sustainable Energy, Automation and Control
Contributors: Hu, J., Morais, H., Lind, M., Bindner, H. W.
Pages: 341-351
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Electric Power Systems Research
Volume: 136
ISSN (Print): 0378-7796
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.32 SJR 1.032 SNIP 1.506
Web of Science (2016): Impact factor 2.688
Web of Science (2016): Indexed yes
Original language: English
Keywords: Congestion management, Electric vehicles, Multi-agent systems, Smart grids, Virtual power plants
DOIs: 10.1016/j.epsr.2016.03.014
Source: FindIt
Source-ID: 277532695
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review