Abstract
In recent years, bio-based chemicals have gained traction as a sustainable alternative topetrochemicals. In order to maximize the impacts of researches and investments, there is a need to focus on the most promising combinations of feedstocks, biochemical products, and bioprocesses. To address this issue, we developed a multiscale framework that integrates modeling approaches across scales of cellular metabolism, bioreactor, bioprocess, and economy/ecosystem, and is able to simultaneously assess biological, technological, economic and environmental feasibility of different production scenarios. Using our framework, we assess the production of two major polymer precursors (1,3-propanediol and 3-hydroxypropionic acid) from two biomass feedstocks (corn-based glucose and soy-based glycerol) using two host organisms (E.coli and S. cerevisiae). We explore the sustainability and economic impacts of a variety of policies and practices (e.g. land-usage, energy source mixture, CO2 emission cap), as well as trade offs between different objectives (e.g. profits for different sectors, emission minimization) for key stakeholders involved in the biochemical value chain (agriculture, energy, and biotechnology sectors).
Original language | English |
---|---|
Title of host publication | Abstract Book - DTU Sustain Conference 2014 |
Number of pages | 1 |
Place of Publication | Kgs. Lyngby |
Publisher | Technical University of Denmark |
Publication date | 2014 |
Publication status | Published - 2014 |
Event | DTU Sustain Conference 2014 - Technical University of Denmark, Lyngby, Denmark Duration: 17 Dec 2014 → 17 Dec 2014 http://www.sustain.dtu.dk/ |
Conference
Conference | DTU Sustain Conference 2014 |
---|---|
Location | Technical University of Denmark |
Country/Territory | Denmark |
City | Lyngby |
Period | 17/12/2014 → 17/12/2014 |
Internet address |