Multi-frequency altimetry snow depth estimates over heterogeneous snow-covered Antarctic summer sea ice – Part 2: Comparing airborne estimates with near-coincident CryoSat-2 and ICESat-2 (CRYO2ICE)

Renée Mie Fredensborg Hansen, Henriette Skourup, Eero Rinne, Arttu Jutila, Isobel R. Lawrence, Andrew Shepherd, Knut Vilhelm Høyland, Jilu Li, Fernando Rodriguez-Morales, Sebastian Bjerregaard Simonsen, Jeremy Wilkinson, Gaelle Veyssiere, Donghui Yi, René Forsberg, Taniâ Gil Duarte Casal

Research output: Contribution to journalJournal articleResearchpeer-review

15 Downloads (Orbit)

Abstract

For the first time, a comparison of altimetry-derived snow depth estimates between dual-frequency spaceborne and near-coincident multi-frequency airborne estimates is conducted using data from the recent under-flight of a CryoSat-2 and ICESat-2 (CRYO2ICE) orbit by a simultaneous airborne campaign over the Weddell Sea in December 2022 carrying Ka-, Ku-, C/S-band radars and a scanning near-infrared lidar. From this unique combination of airborne sensors, the accuracy of snow depth captured by the near-coincident CRYO2ICE orbits can be evaluated. The CRYO2ICE snow depth achieved along the orbit was, on average, 0.34 m, which is within 0.01 m from passive-microwave-derived observations and 0.12 m from a model-based estimate. The retrieval methodology appears to play a significant role, which we suspect is highly dependent on the classification and filtration schemes applied to remove potentially ambiguous altimetry observations. Comparison with airborne snow depths at 25 km segments showed correlations of 0.51–0.53, a bias of 0.03 m, and root-mean-square deviation of 0.08 m when using the airborne lidar scanner as air–snow interface and C/S-band at maximum amplitude at the snow–ice interface. To understand how comparisons across ground, air, and space shall be conducted, especially in preparation for the upcoming dual-frequency radar altimeter mission Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL), it is critical that we investigate the impact of different scattering mechanisms at varying frequencies for diverging viewing geometries considering dissimilar spatial and range resolutions.
Original languageEnglish
JournalThe Cryosphere
Volume19
Issue number10
Pages (from-to)4193–4209
ISSN1994-0416
DOIs
Publication statusPublished - 2025

Fingerprint

Dive into the research topics of 'Multi-frequency altimetry snow depth estimates over heterogeneous snow-covered Antarctic summer sea ice – Part 2: Comparing airborne estimates with near-coincident CryoSat-2 and ICESat-2 (CRYO2ICE)'. Together they form a unique fingerprint.

Cite this