Multi-fidelity, steady-state aeroelastic modelling of a 22-megawatt wind turbine

Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

90 Downloads (Pure)

Abstract

In this work we present multi-fidelity steady-state aeroelastic framework that leverages the state-of-the-art simulation tool HAWC2 for the structural model, and a variety of aerodynamic models, comprising of the low fidelity blade element momentum (BEM) method, the medium fidelity blade element vortex cylinder (BEVC) method and the coupled near wake and vortex cylinder method, and finally the high-fidelity CFD solver EllipSys3D. The aeroelastic framework is part of AESOpt, an aerostructural framework for design of wind turbine blades. The different aerodynamic models are applied to compute the aeroelastic steady state of the newly designed IEA 22 MW Reference Wind Turbine. The results show a very good agreement between the medium- and high-fidelity aerodynamic models with a maximum of 2.7% difference between the high-fidelity aeroelastic response and that of the lower fidelities.
Original languageEnglish
Title of host publicationThe Science of Making Torque from Wind (TORQUE 2024): Aerodynamics, aeroleasticity, and aeroacustics
Number of pages10
PublisherIOP Publishing
Publication date2024
Article number022065
DOIs
Publication statusPublished - 2024
EventThe Science of Making Torque from Wind (TORQUE 2024) - Florence, Italy
Duration: 29 May 202431 May 2024

Conference

ConferenceThe Science of Making Torque from Wind (TORQUE 2024)
Country/TerritoryItaly
CityFlorence
Period29/05/202431/05/2024
SeriesJournal of Physics: Conference Series
Number2
Volume2767
ISSN1742-6588

Fingerprint

Dive into the research topics of 'Multi-fidelity, steady-state aeroelastic modelling of a 22-megawatt wind turbine'. Together they form a unique fingerprint.

Cite this