Mucosal organs exhibit distinct response signatures to hydrogen sulphide in Atlantic salmon (Salmo salar)

Juan Bosco Ara-Díaz, Julie Hansen Bergstedt, Nora Albaladejo-Riad, Muhammad Salman Malik, Øivind Andersen, Carlo C. Lazado*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review


Hydrogen sulphide (H2S) is considered an immunotoxicant, and its presence in the water can influence the mucosal barrier functions of fish. However, there is a significant knowledge gap on how fish mucosa responds to low environmental H2S levels. The present study investigated the consequences of prolonged exposure to sub-lethal levels of H2S on the mucosal defences of Atlantic salmon (Salmo salar). Fish were continuously exposed to two levels of H2S (low: 0.05 µM; and high: 0.12 µM) for 12 days. Unexposed fish served as control. Molecular and histological profiling focused on the changes in the skin, gills and olfactory rosette. In addition, metabolomics and proteomics were performed on the skin and gill mucus. The gene expression profile indicated that the gills and olfactory rosette were more sensitive to H2S than the skin. The olfactory rosette showed a dose-dependent response, but not the gills. Genes related to stress responses were triggered at mucosal sites by H2S. Moreover, H2S elicited strong inflammatory responses, particularly in the gills. All mucosal organs demonstrated the key molecular repertoire for sulphide detoxification, but their temporal and spatial expression was not substantially affected by sub-lethal H2S levels. Mucosal barrier integrity was not considerably affected by H2S. Mucus metabolomes of the skin and gills were unaffected, but a matrix-dependent response was identified. Comparing the high-concentration group's skin and gills mucus metabolomes identified altered amino acid biosynthesis and metabolism pathways. The skin and gill mucus exhibited distinct proteomic profiles. Enrichment analysis revealed that proteins related to immunity and metabolism were affected in both mucus matrices. The present study expands our knowledge of the defence mechanisms against H2S at mucosal sites in Atlantic salmon. The findings offer insights into the health and welfare consequences of sub-lethal H2S, which can be incorporated into the risk assessment protocols in salmon land-based farms.
Original languageEnglish
Article number116617
JournalEcotoxicology and Environmental Safety
Number of pages13
Publication statusPublished - 2024


  • Aquaculture
  • Fish health
  • Mucosal immunity
  • Metabolomics
  • Sulphide toxicity
  • Recirculating aquaculture system


Dive into the research topics of 'Mucosal organs exhibit distinct response signatures to hydrogen sulphide in Atlantic salmon (Salmo salar)'. Together they form a unique fingerprint.

Cite this