Abstract
Porous Co3O4 nanostructures with morphologies including hierarchical nanoflowers and hyperbranched nano bundles have been successfully synthesized by a controlled hydrothermal method and subsequent calcinations at higher temperature. Microscopic characterizations have been performed to confirm that mesoporous Co3O4 nanostructures are built-up by numerous nanoparticles with random attachment. The specific surface area and pore size of the nanoflowers have been found similar to 51.2 m2 g-1 and 12.6 nm respectively. The nanoflowers as an anode materials for lithium-ion batteries (LIBs) demonstrate the higher initial discharge capacity of 1849 mAh g(-1) with a Columbic efficiency 64.7% at a rate of 50 mAh g-1 between 0.01 and 3.0 V. In addition, a significantly enhanced reversible capacity similar to 980 mAh g-1 is retained after 30 cycles. More interestingly, excellent high rate capabilities (similar to 960 mAh g-1 at 250 mA g-1 and 875 mAh g-1 at 500 mA g-1) are observed for porous flower-like structure. The improved electrochemical performance is attributed to the large specific surface area and porous nature of the flower-like Co3O4 structure which is more convenient and accessible for electrolyte diffusion and intercalation of Li+ ions into the active phases. Therefore, this structure can be considered to be an attractive candidate as an anode material for LIBs. © 2012 Elsevier Ltd. All rights reserved.
Original language | English |
---|---|
Journal | Electrochimica Acta |
Volume | 89 |
Pages (from-to) | 199-205 |
Number of pages | 7 |
ISSN | 0013-4686 |
DOIs | |
Publication status | Published - 2013 |
Externally published | Yes |
Keywords
- Co3O4
- Porous nanostructures
- Lithium-ion battery