Morphological changes at the interface of the nickel-yttria stabilized zirconia point electrode

Rolf Jarle Aaberg, Reidar Tunold, Mogens Bjerg Mogensen, Rolf W. Berg, Rolf Ødegaard

    Research output: Contribution to journalJournal articleResearchpeer-review

    279 Downloads (Pure)

    Abstract

    The H-2-H2O, Ni/YSZ point electrode has been investigated using long-term potential step measurements and impedance spectroscopy at 1273 K. Morphological and structural changes at the electrode interface were evaluated by electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy ex situ. The anodic current was found to induce a self-catalytic effect on the electrode, and the anodic "steady state" current increased to more than twice the initial value with a time constant of about 40 h. In contrast, cathodic polarization reduced the performance of the electrode and the cathodic current decreased significantly with a time constant of about 20 h. Redistribution of material in the reaction zone is suggested to control most of the changes in electrode activity. At anodic overpotentials it was observed that Ni was transported to the electrolyte surface, forming a "necklace" of Ni particles around the electrode/electrolyte contact. This is believed to increase the three-phase boundary (TPB) length and account for the higher activity of the electrode. At cathodic overpotentials the transfer of Ni to the YSZ was found to be restricted, and it:is proposed that agglomeration of dispersed metal particles reduced the TPB length, and accordingly the cathodic current. In addition to the morphological modifications, the catalytic properties of the surfaces were significantly altered as the electrode was polarized. Transformation from cubic to tetragonal YSZ, due to segregation of the material, was observed on the surface of the electrolyte when the sample was kept at working conditions for long periods of time (135 days). The passage of current was not found to generate any permanent phase transformation in the YSZ.
    Original languageEnglish
    JournalJournal of The Electrochemical Society
    Volume145
    Issue number7
    Pages (from-to)2244-2252
    ISSN0013-4651
    DOIs
    Publication statusPublished - 1998

    Bibliographical note

    Copyright The Electrochemical Society, Inc. [1998]. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS).

    Fingerprint Dive into the research topics of 'Morphological changes at the interface of the nickel-yttria stabilized zirconia point electrode'. Together they form a unique fingerprint.

    Cite this