Abstract
Severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2) has rapidly become a major global health problem, and public health surveillance is crucial to monitor and prevent virus spread. Wastewater-based epidemiology has been proposed as an addition to disease-based surveillance because virus is shed in the feces of ≈40% of infected persons. We used next-generation sequencing of sewage samples to evaluate the diversity of SARS-CoV-2 at the community level in the Netherlands and Belgium. Phylogenetic analysis revealed the presence of the most prevalent clades (19A, 20A, and 20B) and clustering of sewage samples with clinical samples from the same region. We distinguished multiple clades within a single sewage sample by using low-frequency variant analysis. In addition, several novel mutations in the SARS-CoV-2 genome were detected. Our results illustrate how wastewater can be used to investigate the diversity of SARS-CoV-2 viruses circulating in a community and identify new outbreaks.
Original language | English |
---|---|
Journal | Emerging Infectious Diseases |
Volume | 27 |
Issue number | 5 |
Pages (from-to) | 1405-1415 |
ISSN | 1080-6040 |
DOIs | |
Publication status | Published - 2021 |
Bibliographical note
Funding Information:This work was supported by the European Union’s Horizon H2020 grants VEO (grant no. 874735) and METASTAVA (grant no. 773830), the Erasmus MC foundation, and the Adessium Foundation.
Publisher Copyright:
© 2021 Centers for Disease Control and Prevention (CDC). All rights reserved.